

Solaris Networking Today & Tomorrow

Sunay Tripathi, Senior Staff Engineer, Sun Microsystems, Inc. Sunay.tripathi@sun.com

The Building Block

- Solaris 10 delivered several ground breaking technologies and several useful projects in networking space
- Some of the key technologies/projects are:
 - FireEngine: A high performance architecture for networking stack
 - Wanboot: Remote boot machine using HTTP/HTTPS
 - SCTP
 - Fully deployable Ipv6
 - Bundled SIP stack for VOIP applications
- FireEngine created a ground breaking architecture which is used as a building block for current & future projects

FE - Veritical Perimeter (Squeues)

- Squeue is a per CPU common serialization queue (FIFO) for all inbound/outbound packets
- Squeue provides the mutual exclusion to all TCP connections without locks (lockless design) by allowing only one thread to process it at any given time
- Packet once picked up for processing is taken all the way to socket (on inbound) or NIC (on outbound) giving it the property of Vertical perimeter

FE - IP Classifier

- Use a connection classifier early in IP for incoming packet
- The connection structure ('connp') contains all the necessary information:
 - The CPU/squeue the packet needs to be processed on
 - The string of functions necessary to process the packet (event lists)

FE - Squeue + Classifier

- Create a per CPU squeue index on cpuid
- Bind a connection to a particular squeue so packets for that connection are always processed on same squeue
- Bind each inbound connection to the squeue attached to the interrupted CPU for incoming connection to maintain data locality and vertical separation
- Use the classifier to direct packets to the CPU they need to be processed on

FE - TCP/ IP Merge

- Use function calls between TCP and IP to reduce per packet processing cost
- Separate and optimize the hot paths
- Merge TCP/ IP in one STREAM module (fully MT)
- The STREAM entry points are manipulated based on whether someone opens /dev/tcp or /dev/ip
- TCP/ IP modules behaves the same (as pre FE) i.e. if someone opens /dev/ip he gets the IP behaviour and if someone open /dev/tcp, he gets TCP behaviour

FE - performance wins

- FireEngine Phase 1 integrated in s10_41 and contained improvements for TCP/IP only
- Achieved 45% gain on web like workload on SPARC
- Achieved 43% gain on web like workload on x86
- Other gains (just due to FireEngine):
 - 25% SSL
 - 15% fileserving
 - 40% throughput (ttcp)
- <u>On v20z, Solaris is faster than Linux by 10-20% using</u> <u>Apache or Sun One Webserver on a web based workload</u>

FE - Current Status (cont.)

- Webbench
 - Static Solaris 10 outperforms Windows 2003 by 26%
 - Dynamic Solaris 10 outperforms Windows 2003 by 29% and RHEL-AS3 by 3%
 - Ecommerce Solaris 10 outperforms Windows 2003 by 18% and RHEL-AS3 by 14%
- Solaris 10 can fully saturate a 1Gb link with only 8% of 1x2.2Ghz Opteron and
- Solaris 10 can drive a 10Gb link at 7.3Gbps (limited by PCI-X bandwidth) using 2x2.2Ghz opteron CPUs utilized at less than 50%

Solaris web performance

- Configuration
 - X86: v20z (2x2.2Ghz, 6Gb RAM, 2x1Gb NICs, Zeus 4.1r4)
 - SPARC: Sunblade 2500 (2x1.2Ghz USIII+, 8Gb RAM, 2x1Gb NIC, Zeus 4.1r4)
- Connections/sec are number of connections that can be handled at a certain bit rate (similar to SPECweb99 conn/sec)
- S10U1 numbers are based on project Nemo
- SPARC numbers are with single core Ultra Sparc III+ (US IV numbers should be double of these since we get linear scaling on dual cores) Sun Proprietary

Solaris web performance vs RHEL Apache 1.3.29 Sun Java web server 6.1

- Configuration
 - X86: v20z (2x2.2Ghz, 6Gb RAM, 2x1Gb NICs)
- Connections/sec are number of connections that can be handled at a certain bit rate (similar to SPECweb99 conn/sec)

Solaris Networking: Today

Sunay Tripathi, Senior Staff Engineer, Sun Microsystems, Inc. Sunay.Tripathi@sun.com

Solaris Networking today

- GLDv3 (codename Nemo):
 - Dynamic switching between interrupt and polling
 - 10Gbps NIC support
 - Vlan and Trunking support for off the shelf NICs
- NCA merge to FireEngine (NL7C)
- UDP performance (codename yosemite)
- Forwarding performance (codename Surya)
- IPfilter performance

Dynamically switch between Interrupt and Polling (and packet chaining)

- Networking interrupts are bad because writers gets pinned, context switches, etc.
- Bind a NIC to a Squeue and the let the Squeue own the NIC
- On backlog, Squeue turns the NIC interrupts off
- Squeue can retrieve packets from the ring (in chains) after the backlog is cleared (poll mode)
- If no backlog, Squeue switches the NIC back to interrupt mode

More performance

- Another 25% improvement on x86 and 20% on SPARC platforms on web workloads
- Below is a sample mpstat output

Mpstat (older driver) intr ithr csw icsw migr smtx srw syscl usr sys wt idl 10818 8607 4558 1547 161 1797 289 19112 17 69 0 12 Mpstat (GLDv3 based driver)

intr ithr csw icsw migr smtx srw syscl usr sys wt idl 2823 1489 875 151 93 261 1 19825 15 57 0 27

 Notice the decrease in interrupts, context switches, mutex contentions, etc. and increase in idle time

10 GbE

- We can do 7.3 Gbps on a v20z (with 50% utilization) using 9k frames
- We can do 7 Gbps on a v20z on recv with 1500 bytes frames
- Solaris 10 set new LAN record during Internet 2: Land speed record challenge by transferring 14Gbps over 2 x 10Gbps using a v20z
- Application to application round trip latency close to 40usec

Trunking

- Create the trunk of 1Gb NICs or 10GB NICs
- Each member or the trunk is owned by individual Squeues which control the rate of arrival of packets
- We see pretty linear scalability for a trunk of 4 1Gb NICs – 3.6Gbps
- We plan to handle a combined bandwidth of 30Gbps from a trunk of 4 x 10Gb NICs on a v40z
- During Sunlabs Openhouse in 4/2005, transferred 12Gbps over a trunk of 2x10Gbps NIC (single IP address) on a v20z

UDP Performance (Yosemite)

- Create FireEngine like architecture for UDP as well
- Improve applications like TIBCO which depend on UDP performance
- With IP fully multithreaded and UDP/IP merged into one STREAM module, alleviate problems like UDP packets getting dropped in kernel
- Tibco performance up by 90-130% on xmit and 70-80% on recv
- Available in Solaris 10 Update

IP forwarding (Surya)

- Forward close to million pkts/sec using single opteron processor
- Have the ability to lookup the routing table from Nemo framework itself
- In future, forwarded packet will be turned around from Nemo layer itself
- Solaris will also have the ability to have multiple instances of routing table (per virtual stack)
- Available in Solaris 10 Update

More information

- http://www.sun.com/2004-1012/feature
- http://wwws.sun.com/software/solaris/10/ds/network_performance.jsp
- http://www.sun.com/bigadmin/xperts/sessions/11_fireengine/
- http://www.sun.com/bigadmin/content/networkperf/
- http://www.sun.com/bigadmin/features/articles/meet_architects.html#sunay

Solaris Networking: Tomorrow CrossBow – Stack Virtualization & Resource Control

Sunay Tripathi, Sr Staff Engineer, Solaris Networking Technology Sun MicroSystems Inc.

Real Scenarios

Financial Services

- Trading house starts offering free financial information to attract customers
- Brokerage customers start complaining that trading site slows down
- The paying customers start deserting

Large ISP

- ISP wants to deploy virtual systems on same physical machines
- ISP sells each virtual system at different price levels to its customers
- Any virtual instance can overwhelmed the shared networking resource

Enterprise Computing

- A large company uses a workgroup server for day to day as well as critical traffic
- IT Ops doing non critical stuff started a backup over the network
- Users doing time critical work can't get bandwidth to do their job

What Happened?

- Critical services are overwhelmed by non-critical services, traffic types, or virtual systems
- No usable mechanism available for fairness, priority and resource control for networking bandwidth

Network Virtualization

- Virtualize the 1Gb and 10Gb NICs based on protocol, service, or container
- Requirements:
 - Specifiy priority and/or bandwidth relative to other virtual stacks on the system
 - Be able to choose protocol layers, firewalls rules, encryption rules, and any tuning specific to the virtual stack
- Constraints:
 - Virtual stacks isolated from each other
 - No performance overheads due to virtualization

Virtual Network Stack

Sun Proprietary

Technical Obstacles

- Obstacles to achieving network virtualization:
 - Network processing in interrupt context
 - Anonymous packet processing in kernel
 - Common queues
- Performance can be degraded by the extra processing to enforce fairness, resource control or network virtualization

The Crossbow Architecture

- Use the NIC to separate out the incoming traffic and divide NIC memory amongst the virtual stacks
- Assign MSI interrupt per virtual stack
- The FireEngine Squeue controls the rate of packet arrival into the virtual stack by dynamically switching between interrupt & polling
- Incoming B/W is controlled by pulling only the allowed number of packets per second
- Virtual stack priority is controlled by the squeue thread which does the Rx/Tx processing

Virtual Stacks

The Squeue switches the MSI interrupt per stack between interrupt and polling mode and controls the rate of packet arrival

Sun Proprietary

Virtual Stacks – Services & Protocols

Sun Proprietary

Virt. Stack per container

- Each Solaris container can have its own virtual stack with private routing table etc.
- When container is created, the B/W, priority and number of possible virtual stacks within the container is specified
- The Container administrator can configure the allocated virtual stacks to its own taste
- Each Container can have its own routing table, firewall, etc and tune it according to its requirement

Virtual Stacks - Containers

The Squeue switches the MSI interrupt per stack between interrupt and polling mode and controls the rate of packet arrival

Sun Proprietary

Dumb NICs

- The architecture supports non Nemo NICs as well as Nemo NICs which don't have flow classification capabilities
- We simulate multiple queues or memory area in the Nemo layer using a S/W flow classifier
- Nemo provides a DLPI shim layer for non Nemo drivers
- All the general 1Gb and 10Gb NICs (Sun's, Intel's, Broadcom, Neterion, etc) in future will support the flow classification and memory partitioning capability at no extra cost

Virtual Stacks with Dumb NICs

Sun Proprietary

Defense against DDOS

- Denial of Service attack (DOS) are a threat today
- DOS have the ability to cripple the entire grids and all services offered by them
- Only the impacted services or virtual machine takes the hit instead of the entire grid
- Under attack, impacted services start all new connections under lower priority (limited resource) stack
- Connections transition to appropriate priority stacks after application authentication

Application Level priority

- Crossbow allows administrators to prioritize virtual stacks based on application level priority
- The virtual stacks are programmed for a priority band and are not specific to traffic type
- During connection setup, the connection is mapped to appropriate priority virtual stack by dynamically programming the classifier (with application specifiying the priority)

Differentiated Services

The Squeue switches the Rx Ring between interrupt and polling mode and controls the rate of packet arrival

Sun Proprietary

Fair Accounting System

- Finer grain accounting comes for free
- We can now do per squeue accounting to track usage by a container, service or protocol
- A userland daemon can pull the statistcis out at fixed interval and do accounting etc.

Solaris Networking Today & Tomorrow

Sunay Tripathi, Senior Staff Engineer, Sun Microsystems, Inc. Sunay.tripathi@sun.com

